

Variations

1) Directly

y varies directly as x => y= kx

2) Inversely

Constant of Variation 3 varies inversely as $\chi \Rightarrow 3=$

Y varies directly as χ^2 . $\Rightarrow y = K\chi^2$ $\frac{4}{3}$ is 100 when χ is 5. $\frac{1}{4}$ 100 = $\frac{2}{100}$ 100 = 25 K Sind y when x is 10.

$$y = K \sqrt{x}$$

$$\frac{4}{3}$$
 is 10 when $\frac{10}{5}$ is 25.
 $10=\frac{10}{5}$ $10=\frac{10}{5}$ $10=\frac{10}{5}$ $10=\frac{10}{5}$

Find y when x is 100.
$$y = 2\sqrt{100} = 2 \cdot 10 = 20$$

Ex:

$$y = \frac{1}{x^3}$$

$$5 = \frac{K}{8}$$

$$y = \frac{40}{\chi^3}$$

$$y = \frac{40}{\chi^3}$$
 $y = \frac{40}{4^3} = \frac{40}{69}$

Y varies inversely as 4th root of
$$\chi$$
.

Y = $\frac{K}{\sqrt{\chi}}$

Y is 10 when χ is 81.

 $10 = \frac{K}{\sqrt{81}}$
 $10 = \frac{K}{3}$

Find Y when χ is 16.

 $\chi = \frac{30}{\sqrt{16}} = \frac{30}{2}$
 $\chi = \frac{30}{\sqrt{16}} = \frac{30}{2}$

Joint Variation

Z varies directly as
$$\chi$$
 and inversely

as y^2
 $Z = \frac{K\chi}{y^2}$
 $Z = \frac{K\chi}{y^2}$
 $Z = \frac{K \times 20}{2^2}$

Z is 5 when $\chi = 20$ and $\chi = 2$.

Sind Z when $\chi = 40$ and $\chi = 4$.

 $\chi = \frac{\chi}{y^2}$
 $\chi = \frac{\chi}{y^2}$

Z varies inversely as square noot of
the Sum of
$$\chi^2$$
 and χ^2 . $Z = \frac{K}{\sqrt{\chi^2 + y^2}}$
Z is 5 when $\chi = 6$ and $\chi = 8$.
 $5 = \frac{K}{\sqrt{6^2 + 8^2}}$ $5 = \frac{K}{\sqrt{100}}$ $5 = \frac{K}{10}$ $K = 50$
Sind Z when $\chi = 3$ and $\chi = 4$.
 $\chi = \frac{K}{\sqrt{\chi^2 + y^2}} = \frac{50}{\sqrt{3^2 + 4^2}} = \frac{50}{\sqrt{25}} = \frac{50}{5} = 10$

Solve
$$\begin{cases} x - y = 2 = 0 \\ x^{2} + y^{2} = 34 \end{cases}$$

$$(y+2)^{2} + y^{2} = 34$$

$$(y+2)(y+2) + y^{2} = 34$$

$$(y+2)(y+3) + y^{2} = 34$$

$$(y+3)(y+3) + y^{2} = 3$$

Square - Root Method:
If
$$\chi^2 = K$$
, then $\chi = \pm \sqrt{K}$
Solve $\chi^2 = 32$
By S.R.M.
 $\chi = \pm \sqrt{32} = \pm \sqrt{16}\sqrt{2} = \pm 4\sqrt{2}$
 $\left\{\pm 4\sqrt{2}\right\}$

Ex:
Solve
$$\chi^2 = -100$$

By S.R.M.
 $\chi = \pm \sqrt{-100} = \pm \sqrt{100}\sqrt{-1} = \pm 10i$
 $\{\pm 10i\}$
Ex: $(2\chi - 1)^2 = 81$
By S.R.M.
 $(2\chi - 1) = \pm \sqrt{81}$
 $(2\chi - 1)$

Solve
$$\begin{array}{l}
\text{TS } \chi^2 = K, \text{ then} \\
(3\chi + 2)^2 = 10 \\
\text{By S.R.M.} \\
3\chi + 2 = \pm \sqrt{10} \\
\chi = -2 \pm \sqrt{10} \\
\chi = -2 \pm \sqrt{10}
\end{array}$$

$$\begin{array}{l}
-2 \pm \sqrt{10} \\
\chi = -2 \pm \sqrt{10}
\end{array}$$

Solve

$$(5\chi + 4)^2 = -9$$

By S.R.M.
 $5\chi + 4 = \pm \sqrt{-9}$
 $5\chi + 4 = \pm \sqrt{9}\sqrt{-1}$
 $5\chi + 4 = \pm 3i$
 $5\chi + 4 = \pm 3i$

Solve

$$\chi^2 - 8\chi + 16 = -400$$

Express LHs

 $(\chi - 4) = -400$

By S.R.M.

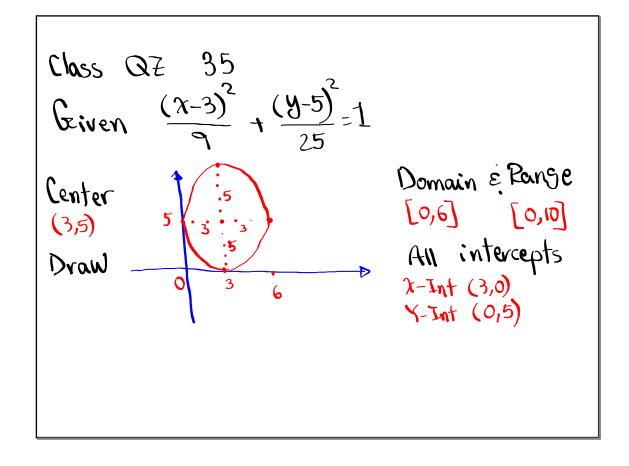
 $\chi - 4 = \pm \sqrt{-400}$
 $\chi = 4 \pm \sqrt{400}\sqrt{-1}$
 $\chi = 4 \pm 20i$

A $\chi = 4 \pm 20i$

A $\chi = 4 \pm 20i$

Express LHs

 $\chi = 4 \pm \sqrt{-400}$


A $\chi = 4 \pm \sqrt{$

Solve

$$4\chi^{2} + 12\chi + 9 = -49$$
 $(3\chi + 3)^{2} = -49$

Now use S.R.M.

 $2\chi + 3 = \pm \sqrt{-49}$
 $2\chi + 3 = \pm \sqrt{-49}$
 $2\chi + 3 = \pm \sqrt{-19}$
 $2\chi + 3 = \pm \sqrt{-19}$
 $2\chi + 3 = \pm \sqrt{-19}$

